Gasless laparoscopy is a new development in the field of laparoscopic/keyhole surgery. A mechanical device is used instead of carbon dioxide to lift the abdominal wall creating a cavity for the surgeons to work within. In rural locations the infrastructure and equipment may not be available for conventional laparoscopic surgery, however since gasless laparoscopy requires less specialist equipment it is much more accessible and more affordable. The problem with gasless laparoscopic surgery is that the amount of force required to lift the abdominal wall sufficiently is dependent on the surgeon’s experience, and may cause abdominal trauma if done incorrectly. No quantitative or qualitative feedback mechanism is known that shows if the retraction force on the lift device is sufficient to create the required cavity.
A ‘tent like cavity created by the lift device
The aim of our project is to create a mechanical force sensor for a lift device to provide an estimation of the force a surgeon is exerting on the abdominal wall. The force feedback from the sensor will help surgeons to avoid abdominal wall trauma by preventing them from using too much force whilst lifting. The sensor must be entirely mechanical so that it can be used in regions with limited electricity supply. Secondary goals of the project are to create an abdominal wall box trainer that will simulate the mechanical properties of the abdominal wall – much better than the piece of fabric that is currently in use.
3D model of current design
We are currently 3 weeks into our project and are well on our way to
creating a prototype of the device. To begin, we conducted a literature review to condense all the critical information, such as the mechanical properties of the abdominal wall, which has been published in journals. The current lift system was also modelled in a 3D design software as it has not been well documented, making it hard to reproduce. Several concepts were designed for the force measurement device and the final design shown is now being manufactured so that we can begin the testing process.
Final concept
We have also spent time researching materials that have similar mechanical properties to the abdominal wall to be used in our box trainer. We are now in the process of learning how to fabricate some reinforced silicone that has similar properties, and is readily available.
Box trainer currently in use
- Liao, C.H., Kuo, I.M., Fu, C.Y., Chen, C.C., Yang, S.J., Ouyang, C.H., Wang, S.Y., Chen, S.W., Hsu, Y.P. and Kang, S.C., 2014. Gasless laparoscopic assisted surgery for abdominal trauma. Injury, 45(5), pp.850-854.